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Abstract

The utility of cluster computers (Beowulfs) for
efficient parallel image processing of large-scale mosaics
and stereo image correlations is presented.  The
parallelization of existing serial software using the
message passing interface (MPI) is described.  Almost
perfect reduction of the required wall-clock time with
increasing number of CPUs is reported.  This true
parallelization approach differs from the use of clusters
as serial task farms in that it reduces the total time
required by individual tasks and enables near real-time
interactive data analysis.  The reduction of required
processing time by over one order of magnitude
furthermore enables the addition of processing steps to
monitor the quality of stereo image correlation tie-
points.  The algorithm for such quality assessment and
the impact with respect to the choice of correlation
algorithms is discussed.  

1. Introduction

The development, application and commercialization
of cluster computer systems have escalated dramatically
over the last several years.  Driven by a range of
applications that need relatively low-cost access to high
performance computing systems, cluster computers have
reached worldwide acceptance and use.  A cluster system
consists of commercial off-the-shelf hardware coupled to
(generally) open source software.  These commodity
personal computers are interconnected through commodity
network switches and protocols to produce scalable
computing systems usable in a wide range of
applications.  First developed by NASA Goddard Space
Flight Center in the mid 1990s, the initial Caltech/JPL
development resulted in the Gordon Bell Prize for price-
per-performance using the 16-node machine Hyglac in
1997 [1]. Currently the JPL Applied Cluster Computing
Technologies group uses and maintains three generations
of clusters beyond the first generation Hyglac.  The
available hardware resources include over 160 CPUs, over
116Gbytes of RAM, and over 2.5Tbytes of disk space.
The individual machines are connected via 100Mbit/s
and/or 2.0Gbit/s networks.

Though the resources are relatively large, the system
cost-for-performance allows these machines to be treated
as ‘mini-supercomputers’ by a relatively small group of

users. Application codes are developed, optimized and put
into production on the local resources.  Being a
distributed memory computer system, existing sequential
applications are first parallelized while new applications
are developed and debugged using a range of libraries and
utilities. Indeed, the cluster systems provide a unique and
convenient starting point to using even larger institutional
parallel computing resources within JPL and NASA.
This paper presents one of the application developments
performed on the clusters of the Applied Cluster
Computing Technologies Group at JPL:  near real-time
parallel image processing for mars rover.

2. Need for parallel image processing

The Mars Exploration Rovers (MER) to be launched
in 2003 rely on detailed panoramic views in their
operation.  These include:

• Determination of exact location
• Navigation and traverse planning
• Science target identification
• Mapping

A sequence of software operates within a data pipeline
to produce a range of products – both for science
visualization and in a mission operations environment.
The original stereo image pairs captured by the rover
cameras are sent to the data processing center and placed
into a database.  The image pairs are then sent through the
pipeline producing the image products.  This processing
software was developed and is maintained by the Multi-
Mission Image Processing Laboratory (MIPL) at JPL [2].
It was recognized that two key software components that
slow the data cycle are the production of mosaics from a
large number of images, and the process of correlating
pixels between a pair of stereo images, which ultimately
are needed for range maps.  The target of this work was
the reduction of required wall-clock time from about 90
minutes on a 450MHz Pentium III for a single mosaic
and for each stereo correlation pair by at least one order of
magnitude.  This was to be achieved by introducing as
few modifications to the existing legacy source codes as
possible.  The following sections summarize the results
for these two algorithms; additional results for the mosaic
and correlation software can be found in [3-5] along with
results for a wide range of applications executing on
cluster machines [5].



Figure 1: (a) Mosaic generation from individual image
frames. The horizontal lines in the panorama indicate the
strips of the image that are distributed to different CPUs in
the cluster. The images were taken from a FIDO Rover field
test in the beginning of May, 2001. (b) Timing for the
assembly of 123 individual images into a single mosaic for
two different clusters.

3. Parallel mosaic generation

To prepare and test for MER operations, the Field
Integrated Development and Operations (FIDO) rovers are
being used.  The FIDO rover cameras gather many
individual images with a resolution of 480x640 that are
stitched together in a larger mosaic. Before the images can
be stitched together they may have to be warped into the
reference frame of the final mosaic, since the orientation
of the individual images change from one to the next and
since the final mosaic might be assembled in different
views.  The algorithm is such that for every pixel in the
desired final mosaic a good corresponding point must be
found in one or more of the original small images.

The original mosaic algorithm was written for
machines that have a limited amount of RAM available,
thus restricting the number of individual images that can
be kept in memory during the mosaic process. With about
256 MB on one CPU one can safely read in all of the
roughly 130 images and keep resident in RAM a copy of
the final mosaic. The algorithm was changed to enable
this with the aid of dynamic memory allocation. The

original algorithm took about 90 minutes on a single
450MHz Pentium III CPU to compose 123 images into a
single mosaic. This algorithm change reduces the required
CPU time to about 48 minutes. Running the same
algorithm and problem on an 800MHz CPU reduces the
time to about 28 minutes (Figure 1b).

To exploit the parallelism available on a cluster, the
parallel mosaic algorithm divides the targeted mosaic into
N slices, where N is the number of CPUs (N=4 in Figure
1a as indicated by horizontal lines). Once each CPU has
completed its tasks, it reports the image slice to the
manager CPU, which then patches the slices together into
one image and saves it to disk. Results of the
parallelization of the mosaic algorithm are shown for the
800MHz cluster and for the 450MHz cluster in Figure 1b.
The dot-dashed line shows the ideal speed-up. The actual
timings follow a linear scaling with deviations from the
ideal attributed to load balancing problems and data
staging problems. The 800 MHz curve extends to a larger
number of CPUs since our 800 MHz cluster has twice as
many CPUs available.  Detailed issues on load balancing
and data staging are discussed in references [4,5].

4. Parallel stereo image correlation

4.1. Overview and primary results

Two eyes in humans provide depth perception. The
images are obtained from two independent optical
systems, the brain correlates the two, and provides a 3-D
impression. The same principle is utilized with stereo
image cameras.  The Mars Exploration Rovers carry
several cameras including two dedicated sets of stereo
camera pairs for navigation, hazard avoidance and science.
The stereo images are used to determine distances to
certain objects and to generate 3-D terrain maps.

While the optical correlation in the brain appears to
function with incredible ease, the digital correlation of
two images is a numerically intensive task.  The original
algorithm used for Mars stereo image correlation was
developed [2] in the Multi-mission Image Processing
Laboratory (MIPL) over several decades.  The original
algorithm consumed typically 90 minutes on a 450MHz
Pentium III CPU.  Under some conditions the algorithm
was plagued by convergence problems, which could result
in computation times of days or longer.  

The new parallel algorithm partitions the reference
image into separate segments that are processed on
different CPUs. The correlation target is available to all
CPUs and no segmenting is performed (see Figure 2).
The new algorithm requires about 55 minutes on a single
450 MHz CPU (due to algorithm changes) and requires
about 4.5 minutes on 16 CPUs.  Running the same
problem on an 800MHz Pentium III cluster reduces the
time further to about 3 minutes on 16 CPUs.  Tests on
inputs that choked the original algorithm with
convergence problems showed that the new algorithm
appears to be no longer subject to these pathologies.  



4.3. Elements of the correlation algorithm

The numerical correlation algorithm tries to find for
every pixel in the left image a corresponding pixel in the
right image. The algorithm starts from a pre-defined seed
point defining a pixel in the left image, and attempts to
correlate this pixel and a set of surrounding pixels with
those in the right image.  A camera model that gives
information relating the geometry of the two cameras is
used to find the starting location in the right image given
a pixel in the left image. Starting at the seed point, the
correlation process spirals outward until new pixels can
no longer be correlated with each other. The algorithm
then begins anew with a different seed point and
continues attempting to correlate pixels that have not been
previously processed. In between the main correlation
stages, a pass is made along the areas not previously
correlated to complete the correlation in those sections of
the image pair. This stage is referred to as filling the
gores in the image. Generally not all pixels can be
correlated, due to the different view angles of the two
cameras.  For example in Figure 2 the left eye sees an area
of ground between the lower ramp and the left of the rover
that the right eye does not see at all (segment 13 in
Figure 2).  Also the complete first column (segments 31-
36) is not present in the right image.

4.3. Parallel image correlation algorithm

Before the existing algorithm was parallelized, a
timing analysis was performed in order to determine in
which functions most of the time is spent. Most of the
time is indeed spent in the core function that performs the
actual correlation evaluation of a few pixels (as opposed
to set-up functions or the drivers that feed pixel pairs to
the core correlator). However the analysis showed that the

algorithm was called several orders of magnitude more
often than there are pixels to correlate. Most of the calls
resulted in an immediate return since the particular pixel
pair had been correlated already. Such a multi-level test-
only entry and exit from a function is computationally
very expensive since it results in register push operations.
We moved this check outside the function call to remove
this inefficiency. We also reduced the overall number of
correlation existence checks by several algorithm changes.
One of the major contributors to failed correlations is the
attempt to correlate edge pixels that only exist in the left
image but not in the right.  These algorithmic changes
resulted in a reduction of required CPU time by about 10-
20%.

After initial algorithm improvements and an analysis
of actual times spent in the core correlation function we
could determine an appropriate path for program
parallelization. Individual calls to the core correlation
function consume about 0.5ms (on an 800MHz Pentium
III).  The actual execution time of this function call
depends on correlation input; i.e. the correlation of an
initial seed point, the correlation on a window edge and
the correlation of remaining gores take different times.
Fine grain parallelization of this function call would be
completely futile for such a fast execution time because
communication costs such as sending a message to
another CPU or sharing information between threads will
cost about that much time (within a factor of 10). We
therefore decided to divide the image into segments and
perform the correlation of the segments independently on
different CPUs (as indicated with the grid in Figure 2).

A division of the image into several independent
segments is a significant deviation from the original
algorithm, which was based on the correlation on the edge
of an ever-increasing window.  Segmenting the image
results in the introduction of new borders across which
correlation cannot proceed [6].  The different segments can
be separated by an arbitrary number of bits as designated

36           30          24          18           12           6

35           29          23          17           11           5

34           28          22          16           10           4

33           27          21          15             9           3

32           26          20          14             8           2

31           25          19           13            7           1

Figure 2: Left and right image of a rover camera.  The left (reference) image is subdivided into segments that are correlated
independently to the right target image by independent CPUs.  The left image has a blue shade overlaid to indicate the pixels
that have been found by a left=>right correlation.  Note that patch 34 indicates an erroneous correlation since that part of the
image is not even in the right image.



by user input.  Parallel correlation will be only performed
with a segment.  The correlation gaps between different
segments can be filled in by a subsequent single CPU
correlation of the overall image size.  Possible transitions
between different segments can therefore be smoothed out.
In the example cases we studied it appeared that there
were no problems at the edges of the different correlation
domains and the second pass with a single CPU run was
not necessary.  The separating frame width between CPU
segments is therefore set to zero by default.

Another algorithm change that was necessary before
the program could be parallelized was the implementation
of a seed generation algorithm that can be called on an
arbitrary segment of the image. The original algorithm fed
a list of seed points distributed evenly throughout the
image, yet uncorrelated or random to the image data.
Within the newly implemented seed generation algorithm
we pick the first point in the dead center of the segment.
Sub-sequent points are picked at random within the
segment. If the new seed pixel has been correlated already
or if the quality of a seed (as evaluated by a single pass
through the correlator) is insufficient, a new seed is
generated.

After a seed is generated the algorithm remains the
same within an image segment. Since the correlation of
seed points, window edges and gores can take a different
time one can easily imagine that different CPUs working
on the different image segments may finish at different
times. To prevent the run-away correlation delay of a
single CPU that will hold up all others (as experienced in
the original single CPU code) we limit the number of
times correlations are attempted.  The correlation within
the segments on the different CPUs is controlled by a
maximum number of (successful) seed generations and a
desired filling percentage of correlated pixels. The
correlation is stopped once the maximum number of trials
has been executed or if the desired filling percentage has
been achieved. A time-based cut-off that synchronizes all
CPUs against a desired maximum execution time as well
as a master-slave approach to even out the work load have
been considered but were not implemented.

With the algorithm changes described above we have
tested image pairs that caused the original correlation
algorithm to run for weeks at a time. Our new algorithm
does not suffer from this pathology any more and finishes
with average time comparable to other image pairs. The
number of correlated points was approximately the same
as any other image pair (80-90%).  The successful finish
of the new algorithm is not due to a premature stop of the
correlation, which might leave one segment completely
uncorrelated.  We believe that the original code was stuck
on gore point correlations due to bad seeds.  The
segmentation of the image speeds up the search for the
remaining gores and their processing significantly.

Figure 3 shows the reduction of processing time with
increasing number of CPUs for two different image sets.  
The scaling is found to be almost perfect for up to 50
CPUs.  The number of maximum seed trials is used as a

parameter to check the influence on the total compute
time.  This influence is shown to be weak.

5. Correlation quality measurements

5.1. Introduction

The parallel correlation algorithm has been
significantly modified from the serial algorithm in terms
of the handling of the seeds and the areas in which
correlation is performed.  The natural question that arises
now is how good are the correlations generated with the
new algorithm compared to the old algorithm?  Visual
inspection of the correlation data seemed to indicate an
acceptable performance, but no quantitative measurement
algorithm was available.  A direct comparison between
the serial and parallel output showed excellent agreement
in large areas, but significant disagreement in some
smaller areas. Noting that the serial code also might
generate erroneous correlation data as indicated above, we
developed a quantitative quality assessment algorithm.

5.2. Correlation quality algorithm

The stereo image correlation software attempts to
deliver for every pixel (x, y) in the reference image (left) a
corresponding pixel coordinate (x', y’) in the
corresponding pair (right) (Fig. 4a).  A simple test to
assess the quality of the left=>right correlation is to check
if a right=>left correlation can return the originating
point.  The basic principle is depicted in Fig. 4b).  It is
based on establishing TWO correlation maps left=>right
and right=>left, therefore doubling the overall workload.
The originally desired mapping relates the red point (x,y)
to the green point.  The corresponding mapping from the
green point back to the left will result in the orange pixel
(x'',y'').  A mapping is considered perfect if (x,y) and
(x'',y'') are identical.  The very strict criterion of a perfect
match can be relaxed by the introduction of an error
window (indicated by the yellow square), which accounts
for integer interpolation round-off and a small amount of
noise.  The influence of this error window size as a
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Figure 3: Correlation time as a function of utilized CPUs on
an 800MHz PIII cluster for two different image sets and a
different number of trial seeds. (the actual image set 2 is not
shown here).



measure of correlation quality will be explored further below.
The correlation verification laid out in Fig. 4b) relies

on the quality of the right=>left correlation, which in
itself is questionable.  If a finite error window size is
considered a situation may arise as depicted in Fig. 4c),
where the l=>r and r=>l verification starting from (x,y)
works out fine (red=>green=>orange), however, the r=>l
and l=>r verification starting from pixel (x',y') does not
(green=>orange=>blue).  If such a deviation occurs we
should have not accepted the mapping from the green dot
to the orange dot in the first verification starting at the red
dot.  Our algorithm has the option to filter out such cases
by running the pair of algorithms repeatedly with the
output of the first pass as an input the new pass.  At each
step a correlation pair that has resulted in a bad correlation
connection is thrown out of the list of available pairs.
This algorithm is repeated until no bad correlation pairs
are found anymore. This way the filtering does bear some
sense of self-consistency in it.

5.3. Parallel. vs. serial code validation

The top row of Fig. 5 shows the left and right images

(x,y) (x',y')l->r

left image right image

(x,y)
(x',y')

(x'',y'')

l->r

left image right image

(x,y)
(x',y')

(x'',y'')

l->r

r->l
l->r

(x''',y''')

left image right image

(a)

(b)

(c)

Figure 4:  (a) correlation mapping from left to right. (b) l=>r
and r=>l mapping with an acceptable error window.  (c)
Closed-loop checking with error windows in the left and
right correlation.

nav_edr_20000509155356_l.img,out_lr_n16_s10_2.mask nav_edr_20000509155356_r.img,out_lr_n16_s10_2_12.mask
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nav_edr_20000509155356_l.img,orig_lr2.mask nav_edr_20000509155356_r.img,orig_lr2_12.mask

Figure 5: left/right images (yellow) overlaid with the validated correlation mask (blue) for the serial (top) and parallel
(bottom) algorithm.  The quality check eliminates the previously the bad correlation data (red lines).  The parallel algorithm
finds more correlated regions than the serial algorithm (green lines).  However the correlation of a checkerboard problem i s
still not eliminated (yellow lines).



overlaid with the verified correlation masks of the original
serial correlation algorithm.  The allowed pixel deviation
is 1.  The area that was wrongly correlated in the left
image has been eliminated by the quality control
algorithm (see large rectangle on the top left of Figure 5 –
corresponding roughly to the frame numbered 34 in
Figure 2).  The second image row of Figure 4 corresponds
to the results from the parallel code run on 16 CPUs
(with 10 maximum seed iterations) after a quality check
with the algorithm above (accepted pixel deviation 1).
The parallel code does find areas of correlations that the
serial code did not explore at all, due to the subdivision
of the image (big green rectangle). Some patterns are
recognized on the rover correctly (small green rectangle)
but other regions are not (small yellow rectangle).  Figure
6 depicts the second image set with an overlaid
correlation mask that was obtained with 16 CPUs and
verified with 1 pixel acceptable deviation.

Figure 7 depicts the number of pixels returned from
the correlation algorithms as a function of number of
CPUs used in the parallel algorithm for image set 1 and
2. There are 4 different quantities depicted: 1) the
raw/uncorrected pixels (largest number), 2) the corrected
pixels allowing for 0 pixel deviation during the mapping
correction (smallest number), 3) corrected pixels with
allowed error of 1 pixel, and 4) allowed error of 2 pixel.
The 0 pixel error requirement is very strict, especially
since there can be simple pixel round-off errors leading to
the elimination of a good pixel pair. Allowing for a 1
pixel deviation increases the number of acceptable pixels
by about 10%.  There is not a large difference in number
of corrected pixels allowing for 1 or 2 pixel errors. The
graph also shows that hitting the correlation algorithm
with 20 over the standard 10 maximum seed points
increases the number of raw pixels but not the number of
good pixels.  The dependence of the number of

(successfully) correlated pixels on the number of CPUs
used in the parallel algorithm is weak.

Image set 1 (Figure 5) clearly does not correlate well at
all.  These sets contain a lot of sharp edges of the rover
and the ramp that the correlation parameters are apparently
not well tuned for.  The correlation algorithm returns
significantly more verified correlation points for image set
2 (Figure 6).

5.4. Validation of simplified algorithms

The correlation algorithm has several lower level
correlation modes available to the user.  The algorithm
historically used most of the time is the so-called
Amoeba algorithm.  It performs a correlation matrix
evaluation in a six dimensional space that allows for
image displacement, resizing, and rotation.  The
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Figure 7:  Number of pixels correlated for two different
image sets as a function of number of CPUs used in the
parallel algorithm with the allowed pixel deviation as a
parameter.  The serial results are indicated at 1 CPU with a
solid red dot.  The dependence of the quality of correlated
pixels on the number of CPUs in the parallel algorithm i s
weak.  Also the dependence on the maximum number of
seeds (10 / 20) is weak.  Allowing for 1 pixels deviation
increases the number of acceptable pixels by about 10%.
Increasing the allowed error window to 2 pixels does not
add many more acceptable correlation points.
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Figure 6:  Image set 2 (yellow) overlaid with verified correlation mask (blue) generated in parallel on 16 CPUs with 1 pixel
acceptable deviation.



Amoeba2 algorithm only considers a two dimensional
displacement problem, which may be quite appropriate for
the case considered here where the stereo images are taken
at the same time by well-characterized cameras with fixed
references.  Without the ability to numerically measure
the quality of the correlation output, a visual inspection
of the data was the only way to assess the quality.  With
the availability of a correlation quality measurement we
can now compare the output of various algorithms and
evaluate the number of pixels returned by each algorithm
measured against the Amoeba algorithm. Table 1 shows a
timing comparison for the Amoeba and Amoeba2
algorithm on the two different image sets considered here.
The correlation is performed on 25 CPUs requiring
approximately 146 seconds for the Amoeba and 23
seconds for the Amoeba2 algorithm.  The Amoeba2
algorithm results in a 6.5x reduction in required CPU
time.  Various other correlation algorithms are available
in the MIPL software and have been compared for their
timing and correlation quality [5].

Image set 1 contains a lot of sharp edges and a
checkerboard-like field on top of the rover.  Only about
44% of the overall available pixels can be successfully
correlated.  Image set 2 correlates much better and about
70-74% of the overall pixels can be correlated.  The two

different algorithms generate 91-98% of the same pixels
and 92-99% of pixels that deviate at most one pixel.
Both algorithms find some pixels that the other algorithm
does not find.  Line and sample correlation are about the
same quality.  

One can therefore conclude from this analysis that for
this class of images the Amoeba2 algorithm can be used
safely.  

6. Conclusions

This paper demonstrates the efficient use of cluster
computers for the near real-time ground data processing of
Mars rover images for large-scale mosaics and left-right
stereo image correlation. The dramatically reduced
processing time of the stereo image pairs enables the
utilization of a image correlation quality check that is
based on a left=>right and right=>left image correlation.
The correlation quality algorithm can also be used to test
various correlation algorithms against each other.  The
parallel software developed in the research-oriented
Applied Cluster Computing Technologies group was
delivered to the MIPL team and integrated into the MIPL
operational system.  
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